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Waves on a stream of finite depth which has a velocity 
defect near the free surface 

By P. L. BETTS 
Department of Mechanical Engineering, University of Manchester 

Institute of Science and Technology 

(Received 23 December 1968 and in revised form 21 October 1969) 

The conditions under which stationary waves may exist on a stream of water of 
finite depth are investigated theoretically for the case of a current which is 
uniform except for a constant defect in velocity in a region near the free surface. 
The analysis is extended to provide a two-dimensional theory for the surface 
profile induoed by a simplified model of a hovering craft. The relevance of this 
work to the use of high speed flumes is discussed, and an example demonstrates 
the importance of the velocity distribution near the free surface. 

1. Introduction 
The present interest in hovering and hydrofoil craft as a means of transport 

over water has lead to the development of a number of high-speed circulating 
water channels, notably at the Universities of Leeds and Liverpool. In such a 
channel, the water issues from a fully enclosed contraction into a working section 
where it has a free surface. Binnie, Davies & Orkney (1955) noted that, unless 
special precautions are taken, a boundary layer is shed from the lid of the con- 
traction, and there is a noticeable defect in velocity near the free surface through- 
out the working section. 

A channel of this type would not be used for conventional ship resistance tests, 
and so the interest is wholly in the effect that the surface wake might have on 
water waves. Taylor (1955), in his work on the hydraulic breakwater, derived 
the theoretical results for free waves advancing into and being stopped by an 
opposing surface current above an otherwise stationary sea. A simple change 
in co-ordinates, to a set moving with the waves, leads directly to a method for 
calculating the wavelength of the stationary waves that may appear on the 
surface of a current which is uniform except close to the free surface. Taylor’s 
analysis can be applied equally well to the case of a defect in velocity at the 
free surface as to an excess, although he only made numerical calculationsrelevant 
to the latter. However, his theory only applies to a stream of infinite depth and, 
since the channels discussed can be run at velocities corresponding to Froude 
numbers (main stream velocity/(g x depth)&) of up to two, it seems desirable to 
investigate the situation further for depths which are not large compared with 
the length of the stationary waves. 

The theoretical a,pproach in the present paper differs from that of Taylor in 
that a frame of reference is taken which is stationary relative to the wave train 
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(i.e. stationary relative to any model placed in the channel), and also the problem 
is approached by considering the application of a spatially periodic, but time 
independent, pressure to the free surface. In this way, not only can the condition 
for stationary waves be determined (corresponding to zero amplitude of pressure 
fluctuation), but also a two-dimensional theory can be derived for the effect of 
the surface wake on the disturbance caused by a simplified hovering craft. 

i 

(4 (b) 
FIGURE 1. Assumed distribution of velocity in surface wakes. 

2. The effect of a spatially periodic pressure applied to the free surface 
Take as co-ordinates x, horizontal and positive in the direction of the under- 

lying current, and y vertical and positive upwards, the origin being in the un- 
disturbed free surface (figure 1 (a)) .  Let the undisturbed velocity of the underlying 
current be c2 and that within the surface wake c,; both of which are independent 
of y. The total depth of water is denoted by h, the depth of the velocity defect 
region by 6, and the pressure imposed on the free surface by po = C cos kx. A 
velocity distribution such as that shown in figure 1 (a )  would be impossible in 
practice, since it is highly unstable at  the velocity discontinuity and would soon 
develop into one more like that shown in figure 1 ( b ) .  However, Taylor’s work 
shows that the major features of surface waves on the two velocity distributions 
are the same when h is infinite, and only the case of a uniform velocity defect 
will be considered here. 

The analysis is similar to that of Lamb (1932, Art. 245) where he considers the 
effect of a spatially periodic pressure on a uniform stream (i.e. c1 = c2 or 6 = 0). 
When viscosity is neglected, Laplace’s equation is satisfied in each region, and 
we can assume that the stream function is given by 

@/cl = - y + (a,  sinh ky + /3, cosh ky) cos kx, (2 . la )  

( 2 . l b )  and $/c2 = - y + (a2 sinh ky + p2 cosh ky) cos kx + A  
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within the wake and the underlying main stream respectively, where A is a, 
constant. 

At the bottom, y = -h, 

&+hlax = - kc,( - a, sinh kh + p2 cosh kh) sin Ex = 0, 

or 

in the main stream, where 

$/cz = - y + yz sinh k(y + h) cos kx + A 

y, = a,/cosh kh = P,/sinh kh. 

The interface between the two currents is a common streamline at, say, 

c1(8 - E cos kx) + cl[al sinh k( - 6 + E cos kx) + p1 cosh k( - 6 + E cos kx)] cos kx 

y = - 6 + E cos kx, and hence 

= c2 (6- 6 cos kx) +c2y2 sinh k(h- 8+ E cos kx) cos kx+c,A 

= constant. 

Equating the fluctuating parts of each expression to  zero, and ignoring terms 

E = - a1 sinh k6 + P1 cosh k8 of order e2, leads to  

= y,sinhk(h-8). (2.3) 

The requirement that the static pressure should be continuous across the inter- 
face yields the further condition 

c:(alcoshk8-plsinhk8) = c;y,coshk(h-S), (2.4) 

when second-order terms are again neglected. 
The linearized conditions a t  the free surface are 

9 = plc0skx, (2.5) 

a=-- C cos kx 

P P 
from (2.1 a) and - - gy + kc:al cos kx, 

from the pressure condition. Thus, 

C/p = kc2,al- gP1. (2.6) 

When a1 and y, are eliminated from (2.3), (2.4) and (2.6), the resulting equation 
€or the wave amplitude p1 is 

Clp = Plc;(kF- k,), (2.7) 

where 
~ ~ c o t h k ( h - 6 ) c o t h  k 6 + ~ ;  
C; coth k(h - 8) + C: Wth kS 

F =  

and k, = SIC:. 

The form of the free surface is then given by 

G cos kx 
= pc;( k F  - k,). 

(2.8) 
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3. The condition for free stationary waves 

(of amplitude 
If the pressure over the free surface is uniform, C = 0 and stationary waves 

$: 0) are only possible if 

kcy[cg coth k(h - 6) coth k6 + c!] 
c; coth k(h  - 6) + c; coth k6 

- g  = 0. 

This equation determines the wavelength (2n/k)  of possible stationary waves 
on the given stream. It is convenient t o  express ( 3 . 1 )  in non-dimensional form. 
This may be accomplished in several ways. The one followed here is to  take 

Equation (3 .1 )  is then 
1 coth T [ (  1/R) - 11 + V 2  coth T 
V 2  coth T [ (  1/R) - 11 coth T + V 2  U = - (  ( 3 . 3 )  

The results of interest are values of T for given values of R, V ,  and either 
c2/(g6)*(  = [U/T]g)  or c,/(gh)* (= [UR/T]* ) .  Some numerical computations of 
( 3 . 3 )  are displayed in figures 2 and 3.  

I n  figure 2 ,  where T is plotted against ( U / T ) $ ,  the limit R -+ 0 corresponds 
to  h + co, and equation ( 3 . 3 )  reduces, with a change in terminology, to  Taylor's 
hydraulic breakwater equation.? I n  figure 3, where T / R  ( = kh) is plotted against 
(UR/T)a, the limit R + 0 corresponds to  6 --f 0. In  general, it appears that  on 
both figures a change in V is more important than one in R. This effect is due to  
the physical importance of the velocity close to  the free surface and is in agree- 
ment with a conclusion of Taylor's that a surface current of constant velocity 
in deep water will have the same stopping effect as one of the same thickness, 
but with constant vorticity, when the velocity of the former is somewhat greater 
than the average velocity of the latter. 

A value of V greater than unity has been included on both the figures as 
this would correspond to  an over enthusiastic use of boundary-layer injection 
a t  the trailing edge of the contraction lid, and injection is a possible method for 
eliminating the velocity defect. A velocity ratio V more than unity corresponds, 
with a change in reference frame, to  the case of a hydraulic breakwater, but the 
stopping effect on waves below a certain wavelength is not immediately obvious 
because of the way in which the figures have been plotted. 

The maximum value of (UB/T) i  for which waves can exist on the flow occurs 
when k --f 0. Multiplication of both the numerator and denominator in ( 3 . 1 )  by 
tanh k(h - 6) tanh kS and taking the limit as k + 0 leads to  the equation 

(3.4) 

7 Scales of c , / (qS)& E ( UVz/T)B are also shown in figure 2. Since the disturba.nce caused 
by the waves is negligible beyond $A below the free surface, the effect of the underlying 
current is negligible when S / A  = TI277 > 0.5. I n  this region, all the curves in figure 2 
collapse to a single curve when plotted as T against cl/(gS)*. Similarly, the value of the 
depth h has negligible effect when h/A T/2nR > 0.5. 
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FIGURE 2.  The effect on the wave-number of free stationary waves as the depth h 3 03: 

(a )  Ti CJC$ = 0.60; ( b )  V = 0.80; (c) V = 1.20; - , R S/h = 0 ;  ----, 
R = 0.05; _-.-.- , R = 0.10; . . . . . . . . ., R = 0.20; - *  * - *  .-, R ~ 0 . 4 0 .  
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Physically, this is the measured or nominal Froude number above which no 
waves of infinitesimal amplitude can exist. 
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FIGURE 3. (a )  and ( b )  The effect on the wave-number of free stationary waves as the 
t,hickness of the surface wake tends to zero. The values of V are stated on the figures: 
-- , R R = 0.20; 
_. .-. .- , R = 0.40. 

S/h = 0; ----, R = 0.05; -.-.- , R = 0.10; . . .  . . . . .  .. 
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4. The surface profile caused by a simplified model of a hovering craft 
The solution expressed by (2.8) may be generalized to construct the effect of 

an arbitrary distribution of pressure, say 

Po = P(47 (4.1) 

with the aid of Fourier’s double-integral theorem. Lamb (1932, Art. 245) has 
derived the surface form of a uniform stream with a band of pressure imposed 
on it such that p(x) equals zero for all but infinitesimal values of x, for which it 
becomes infinite in such a way that 

m [ p(x)dx = P 
J --OD 

This gives the effect of a finite force P per unit length across the flow concentrated 
on an infinitely narrow band of the surface at the origin. It may therefore be 
considered as a first approximation to a hovering craft, which completely spans 
the flow and has a length short in comparison to that of the surface waves 
(cf. Hogben 1967). 

Generalizing (2.8) in the same way gives 

as the representation of the effect of the pressure distribution defined by (4.1) 
and (4.2) on a stream with a surface wake. Equation (4.3) may be written as 

(4.4) 

where T, R and V are the dimensionless groups defined in equations (3.2), and 

coth T[( 1/R) - 11 coth T + V 2  
cothT[(l/R)- 1]+ V2cOthT‘ 

F(T) = 

The integral in (4.4) can be evaluated by contour integration in a manner 
similar to that used by Lamb. As in the case with a uniform stream, the complex 
function of fl( = T + iq) under the integral sign has a singular point at [ = T i co 
according as x is positive or negative, and the remaining singular points are given 
by the zeros of the denominator, which are here roots of the equation 

<.F(g)-k ,S  = 0. (4.5) 

This equation is somewhat more complicated than the equivalent equation with 
a uniform stream, but since the Laplace equations for the stream function are 
of the Sturm-Liouville form, there can be no complex eigenvalues of k2 in (3.1). 
Consequently the roots of (4.5) are still either real or pure imaginary. 

When c:/gS > 1 + V z [ (  1/R) - 11, it follows from (3.4) that there are no real 
roots of (4.5) but only an infinite series of pure imaginary ones. For 12: positive, 
the surface profile is obtained by integrating around the upper half-plane and is 
given by iP exp (iQx/S) 

Y = -2z 
P C l  f’(fls) ’ 

33-2 
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where 
the upper half-plane, and 

Since is always a positive imaginary number (6 = ir, say), each term in the 
summation decays exponentially as exp ( - r , x / 6 )  with distance from the origin, 

Cl lCZ 

is a typical root of (4.5), the sum is taken over all the singularities in 

f‘(6) = W )  + C.-E”’(C)* 
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FIGURE 4. Comparison of assumed distribution of velocity in surface wake with experi- 
mental distribution measured in the Liverpool University high speed flume with c2 = 5 ft./s 
and h = 2.75 ft.: - , experimental distribution; (a) immediately downstream of con- 
traction; (b )  in working section 6 ft. downstream; (c) 12 ft .  downstream. - - - -, distribution 
assumed to be equivalent to the experimental distribution (b) .  
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and the surface elevation, which is symmetrical about the band of pressure, 
tends to zero at large distances from it. 

When c?/gS < 1 + V2[(  1/R) - 11, (4.5) has a pair of real roots ( & 6 say), and the 
lowest pair of pure imaginary roots has disappeared. The integral in (4.4) is then 
indeterminate and we are reduced to finding its Cauchy principal value. The 
required contour of integration is again similar to that used by Lamb, the points 
5 = & 6 being excluded by small semi-circles, and the additional condition of 
wave free water upstream must be introduced. The surface form, for x positive, 
is then found to be 

and for x negative 

2P sin (6x16) iP exp (icsx/S) 
y=---- +-2z 

Pc: f’(6) PC, f ’ ( 5 s )  ’ 

f t ( f ; s )  
Y = - - c  

Pc: 

iP exp ( - icsx/6) 

(4.7) 

The real roots * c  are, of course, not included in these summations over the 
singularities in the upper half-plane. The general form of the surface is therefore 
similar to that which would occur on a uniform stream, namely a local deforma- 
tion, which is symmetrical about the band of pressure and negligible at large 
distances from it, added to a trailing stationary wave train of constant amplitude. 
The length of the waves (2nS/6) is equal to that of the free stationary waves 
discussed in 0 3, and the sine phase arises because the origin represents the com- 
plete hovering craft and not just the leading or trailing edge. 

5. An example of practical interest 
The velocity profiles shown on figure 4 were measured in the high-speed flume 

at  Liverpool University before any attempts were made to reduce the surface 
wake. The uniform velocity defect profile, which is also shown on figure 4, may 
be taken as a reasonable approximation to the profile in the working section 
(cf. 5 3). The value of 112 = 6/h is therefore 0.05 and ‘v = cI/c2 = 0.90, and we shall 
consider numerically the surface profiles induced by the band of pressure when 
the nominal Froude number of the stream (c,/(gh)t) is 0.5 and 2.0. 

Consider the pure imaginary roots (f; = ir) given by (4.6). When 7 is large, the 
values of 7 approach the roots of 

1 -  V2tanq[(l/R)-1]tanT 
tan?+ V2tanq[(1/R)- 11 = o  

from below. Moreover, since [(1/R) - 13 = 19, which is an integer, the value of 
the function in (5.1) is repeated at  intervals of n-, and there are 20 roots within 
a range of n of 7. Thus for any root cs = iy, of the full equation (4.5), there is 
another root f;b+20) = i(qs+n-+A), where A is small when qs is large. Since f ’ (cs )  
in (4.6) and (4.7) is always positive imaginary andf’(<(s+20,) is greater than f‘(Q), 
it is possible to put upper and lower bounds on the local elevat,ions given in 
(4.6), (4.7) and (4.8). 

For each value of x, the lower bound is obtained by simply curtailing the 
infinite series in the equations after a finite number of terms. The series was 
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curtailed after the 93rd term for c,/(gh)t = 0-5 and after the 94th term for 
c,/(gh)& = 2.0. The difference in the number of terms is due to  the disappearance 
of the lowest root a t  the lower Froude number. The upper bounds were obtained 
by summing the first) 73 and 74 terms respectively and then adding to these values 
the sums of the 20 geometric progressions given by 

where i7, is a typical root of (4.5) included in the last 20 terms of the lower bound 
series. The differences between the upper and lower bounds of the local elevations 
were found t o  be negligible except at very small values of 1x1. This region has 

Dimensionless horizontal distance gx/c;  

FIGURE 5 .  Components of surface profiles caused by band of pressure with c,/(gh)a = 0.5;  
, with surface wake, R = 0.05, B = 0.90; - - - -, uniform stream: (a) local 

elevation profile; (b )  trailing wave profile. 

been omitted from the curves of local elevation shown in dimensionless form on 
figures 5 and 6, since i t  is also the region in which the artificiality of the pressure 
band and the effects of linearization will be most noticeable. The calculations 
of the wave component in (4.7) when c,/(gh)$ = 0.5 are straightforward, and the 
results are also shown on figure 5; the total elevation is therefore the sum of the 
two curves (a) and ( b )  on this figure. 

For compttrison, similar calculations have been performed for a uniform stream 
a t  Froude numbers of 0.5 and 2.0. The method of summing the infinite series 
was similar to  that described above, except that only one geometric progression 
was needed. The first 99 and 100 terms respectively were used for the lower 
bounds. The resuIts of these calculations are also shown on figures 5 and 6, and 
the effects of the surface wake are immediately apparent. The wake increases the 
amplitude of the trailing wave on figure 5 by 14 % and reduces its length by 7 yo; 
to obtain a trailing wave with the same value of kh on a uniform stream would 
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require a reduction in the Froude number of 38 yo, even though the wake only 
reduces the average velocity of the stream by 8 %. The percentage increase in 
the local elevation, caused by the velocity defect, at comparable values of both 
x/h and gx/cE is greater a t  the lower value of c2/(gh)3. Indeed, for c,/(gh)g = 2.0 
(figure 6), there is a small decrease in local elevation when gx/cE > 0.2. 

- 
- 

0-  I I I 

Dirnensionless horizontal distance gxjc; 

FIGURE 6. Surface profiles caused by band of pressure with c,/(gh)i = 2.0; ~ , with 
surface wake, R = 0.05, V = 0.90; - - - -, uniform stream. 

Calculations have also been performed, a t  selected values of R and V ,  t o  
determine the effect of the surface wake on the amplitude of the trailing waves 
over a range of Froude numbers. The results of these are displayed on figure 7 
as values of the ratio of the amplitude (a,) with a surface wake to  that (a )  on 
a uniform stream of depth h and velocity c2. The corresponding values of the 
wavelengths can be obtained from figure 3. The effect of the bottom on waves on 
the uniform stream is negligible for values of the Froude number, c2/(gh)3, less 
than about 4, and consequently a oc l /c& since the model hovering craft is always 
in the high planing region because the band of pressure is infinitely short along 
the flow. As c,/(gh)* is increased beyond +, the effect of the finite depth of the 
stream becomes increasingly important and the amplitude reaches a minimum 
value, after which it increases until it eventually tends to infinity as the Froude 
number approaches unity. 

When there is a surface wake, the underlying current has a negligible effect 
on the waves when the wavelength is less than twice the wake thickness. Thus at 
low values of c,/(gh)J, a s a  l/c:, and consequently a,/a = l /V2.  As the Froude 
number increases, so does the wavelength; the initial effect of the underlying 
stream is to  make the value of a, depart even further from that of a, but a t  
slightly higher Froude numbers this effect is reversed. At high subundal Froude 
numbers, with V < 1, the rapidly increasing value of a starts to  dominate the 
ratio a,/a until, at c2/(gh)t = 1, a,/a = 0. Beyond this, values of a, exist, but there 
can be no waves on the superundal uniform stream. When V > 1, as increases 
more rapidly than a in the high subundal range, and as/a -+ co as 
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FIGURE 7. (a) and (b)  The effect of the velocity defect on the amplitude of trailing waves a.s 
a function of nominal Froude number c2/(gh)*: ~ , V = 1, other values of V are stated 

R = 0.40. 
on the figures; - - - -, R = 0.05; -.-._ , R = 0.10; . . . . . . . . ., R = 0.20; -. .-. .-, 

6. Discussion 
The analysis of §$4 and 5 will only represent approximately the surface profile 

for the idealized hovering craft in a real situation, where the velocity profile 
is similar to  those on figure 4. This will be particularly true of the local elevation 
component, since the integral in (4.3) is taken over all wave-numbers and the 
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true equivalent uniform defect profile will depend on the wave-number. For 
example, the uniform velocity in the wake should be taken as the true surface 
velocity when k tends to infinity. However, the analysis does provide a useful 
method for determining the order of magnitude of the error caused by the surface 
wake, and hence for determining whether a stream is sufficiently uniform near 
the surface to be acceptable for experimental work. Similar velocity defects can 
also occur naturally in rivers and other open-channel flows with no upstream lid, 
where they are generally caused by secondary flows or wind stress. Moreover, it 
is always difficult to measure the velocity of water accurately near a free surface, 
and the analysis could be used to estimate the possible effect on waves caused by 
this uncertainty. For many purposes the calculations of 3 3 should be sufficient. 

The author would like to thank Professor J. H. Preston and Mr K. Nicholson of 
Liverpool University for their kindness in making available the experimental 
velocity profiles shown on figure 4. 
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